Đề thi tham khảo HKI / 4
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Cấn Văn Thắm (trang riêng)
Ngày gửi: 21h:20' 14-11-2014
Dung lượng: 0 Bytes
Số lượt tải: 2
Nguồn:
Người gửi: Cấn Văn Thắm (trang riêng)
Ngày gửi: 21h:20' 14-11-2014
Dung lượng: 0 Bytes
Số lượt tải: 2
Số lượt thích:
0 người
Câu 1 :Cho đường thẳng (d) :
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ hình chiếu của A xuống (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 2 : Trong Oxy cho (d) :3x + 2y + 1 =0 ; điểm A(1,2). Viết phương trình đường thẳng (d’) đối xứng của (d) qua A.
A. 2x + 3y -15 = 0 B.3x + 2y -15 = 0
C. 3x + 2y +15 = 0 D.3x + 2y -5 = 0
Câu 3 : Cho y=exsinx. Chọn câu đúng :
A. y’’ – 2y’ + 2y = 0 B. y’ – 2y’’ + 2y = 0
C. y’’ – 2y’ + 3y = 0 C. A. y’ – 2 + 2y = 0
Câu 4 : Cho hàm số
y = x3 – 2(2-m)x2 + 2(2-m)x + 5
Tìm m để hàm số luôn luôn đồng biến
A. không có m
B. Với mọi m
C. m <1 & m thuộc [2 ;3]
D. m<1 & m < 2 hay m > 3
Câu 5 : Cho hàm số
y = x4 – mx3 – 2(m + 1)x2 – mx + 1
xác định m để hàm số có đúng 1 cực trị
A. m thuộc [-4 ;] B. Với mọi m / {1}
C. Không có m D. m thuộc [-1 ; 9]
Câu 6 : Tìm Max, Min của hàm số
y = x + cos2x trên 0 ≤ x ≤ п/4
A.max = , min = 1
B. max = , min = -1
C. max = п + 2, min = 1
D.max = п/4, min = 0
Câu 7 : Cho (E) : 2x2 + 12y2 = 24. viết phương trình Hypebol (H) có 2 đường tiệm cận y = ± 2x và có 2 tiêu điểm là tiêu điểm của (E) .
A. 4x2 – y2 = 8 B. 2x2 – y2 = 8
C. 8x2 – y2 = 8 D. 4x2 –2y2 = 8
Câu 8 : Hãy biện luận số nghiệm của phương trình sau đây theo m
x2 + 2x + 5 = (m2 + 2m + 5)(x + 1)
A.m ≠ -1
B.m ≠ -1 và -2 < m < 0
C.-2 < m < 0
D. Với mọi m
Câu 9 : Tìm Max, Min của
y = 2sin2x + 4sinxcosx +
A. max = 2 + 1, min = -1
B. max = 2 - 1, min = 1
C. max = 2 + 1, min = 1
D. max = 2 - 1, min = 1
Câu 10 :Cho đường thẳng (d) :
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ A’ đối xứng của A qua (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 11 : Cho (d) :2x + y + 1 = 0 và A(0,3), B(1,5). Tìm M trên (d) sao cho
MA - MB nhỏ nhất :
A. (-1,1) B. (,)
C.(-2,3) D. (1,1)
Câu 12 : Lập phương trình chính tắc của Elip có độ dài trục lớn bằng 4, các đỉnh nằm trên trục nhỏ và các tiêu điểm của (E) cùng nằm trên 1 đường tròn
A. x2 + 4y2 = 8 B. 4x2 + y2 = 8
C. x2 + 4y2 = 4 D. 4x2 + y2 = 4
Câu 13 : Viết phương trình đường tròn (C) qua điểm A(-2,1) và tiếp xúc với đường thẳng 3x – 2y - 6 = 0 tại M(0 ;-3)
A (x + 15/7)2 + (y -11/7)2 = 325/49
B. (x - 15/7)2 + (y -11/7)2 = 325/49
C. (x - 15/7)2 + (y +11/7)2 = 325/49
D. (x + 15/7)2 + (y +11/7)2 = 325/49
Câu 14 : Viết phương trình đường tròn có tâm nằm trên (d) : 4x + 3y – 2 = 0 và tiếp xúc với đừơng thẳng sau :
(d1) : x +
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ hình chiếu của A xuống (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 2 : Trong Oxy cho (d) :3x + 2y + 1 =0 ; điểm A(1,2). Viết phương trình đường thẳng (d’) đối xứng của (d) qua A.
A. 2x + 3y -15 = 0 B.3x + 2y -15 = 0
C. 3x + 2y +15 = 0 D.3x + 2y -5 = 0
Câu 3 : Cho y=exsinx. Chọn câu đúng :
A. y’’ – 2y’ + 2y = 0 B. y’ – 2y’’ + 2y = 0
C. y’’ – 2y’ + 3y = 0 C. A. y’ – 2 + 2y = 0
Câu 4 : Cho hàm số
y = x3 – 2(2-m)x2 + 2(2-m)x + 5
Tìm m để hàm số luôn luôn đồng biến
A. không có m
B. Với mọi m
C. m <1 & m thuộc [2 ;3]
D. m<1 & m < 2 hay m > 3
Câu 5 : Cho hàm số
y = x4 – mx3 – 2(m + 1)x2 – mx + 1
xác định m để hàm số có đúng 1 cực trị
A. m thuộc [-4 ;] B. Với mọi m / {1}
C. Không có m D. m thuộc [-1 ; 9]
Câu 6 : Tìm Max, Min của hàm số
y = x + cos2x trên 0 ≤ x ≤ п/4
A.max = , min = 1
B. max = , min = -1
C. max = п + 2, min = 1
D.max = п/4, min = 0
Câu 7 : Cho (E) : 2x2 + 12y2 = 24. viết phương trình Hypebol (H) có 2 đường tiệm cận y = ± 2x và có 2 tiêu điểm là tiêu điểm của (E) .
A. 4x2 – y2 = 8 B. 2x2 – y2 = 8
C. 8x2 – y2 = 8 D. 4x2 –2y2 = 8
Câu 8 : Hãy biện luận số nghiệm của phương trình sau đây theo m
x2 + 2x + 5 = (m2 + 2m + 5)(x + 1)
A.m ≠ -1
B.m ≠ -1 và -2 < m < 0
C.-2 < m < 0
D. Với mọi m
Câu 9 : Tìm Max, Min của
y = 2sin2x + 4sinxcosx +
A. max = 2 + 1, min = -1
B. max = 2 - 1, min = 1
C. max = 2 + 1, min = 1
D. max = 2 - 1, min = 1
Câu 10 :Cho đường thẳng (d) :
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ A’ đối xứng của A qua (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 11 : Cho (d) :2x + y + 1 = 0 và A(0,3), B(1,5). Tìm M trên (d) sao cho
MA - MB nhỏ nhất :
A. (-1,1) B. (,)
C.(-2,3) D. (1,1)
Câu 12 : Lập phương trình chính tắc của Elip có độ dài trục lớn bằng 4, các đỉnh nằm trên trục nhỏ và các tiêu điểm của (E) cùng nằm trên 1 đường tròn
A. x2 + 4y2 = 8 B. 4x2 + y2 = 8
C. x2 + 4y2 = 4 D. 4x2 + y2 = 4
Câu 13 : Viết phương trình đường tròn (C) qua điểm A(-2,1) và tiếp xúc với đường thẳng 3x – 2y - 6 = 0 tại M(0 ;-3)
A (x + 15/7)2 + (y -11/7)2 = 325/49
B. (x - 15/7)2 + (y -11/7)2 = 325/49
C. (x - 15/7)2 + (y +11/7)2 = 325/49
D. (x + 15/7)2 + (y +11/7)2 = 325/49
Câu 14 : Viết phương trình đường tròn có tâm nằm trên (d) : 4x + 3y – 2 = 0 và tiếp xúc với đừơng thẳng sau :
(d1) : x +
 
Các ý kiến mới nhất